skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Menten, K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hirota, T; Imai, H; Menten, K; Pihlström, Y (Ed.)
    Abstract Stellar SiO masers are found in the atmospheres of asymptotic giant branch (AGB) stars with several maser transitions observed around 43 and 86 GHz. At least 28 SiO maser stars have been detected within ∼2 pc projected distance from Sgr A* by the Very Large Array (VLA) and Atacama Millimeter/submillimeter Array (ALMA). A subset of these masers have been studied for several decades and form the basis of the radio reference frame that anchors the reference frame for infrared stars in the Galactic Center (GC). We present new observations of the GC masers from VLA and ALMA. These new data combined with extant maser astrometry provide 3D positions, velocities, and acceleration limits. The proper motions and Doppler velocities are measured with unprecedented precision for these masers. We further demonstrate how these measurements may be used to trace the stellar and dark matter mass distributions within a few pc of Sgr A*. 
    more » « less
  2. Hirota, T; Imai, H; Menten, K; Pihlstrom, Y (Ed.)
    Abstract Intense mass loss through cool, low-velocity winds is a defining characteristic of low-to-intermediate mass stars during the asymptotic giant branch (AGB) evolutionary stage. Such winds return up ∼80% of the initial stellar mass to the interstellar medium and play a major role in enriching it with dust and heavy elements. A challenge to understanding the physics underlying AGB mass loss is its dependence on an interplay between complex and highly dynamic processes, including pulsations, convective flows, shocks, magnetic fields, and opacity changes resulting from dust and molecule formation. I highlight some examples of recent advances in our understanding of late-stage stellar mass loss that are emerging from radio and (sub)millimeter observations, with a particular focus on those that resolve the surfaces and extended atmospheres of evolved stars in space, time, and frequency. 
    more » « less